Abrasion

  • Abrasion

I'm Online Chat Now


High Vacuum Friction and Wear Tester

High Vacuum Friction and Wear Tester

The High Vacuum Friction and Wear Tester is designed and manufactured in strict accordance with GJB 3032. It is used to simulate the friction and wear behavior of materials and their surface coatings under high-vacuum environmental conditions. Under controlled vacuum conditions, the equipment can accurately measure friction force, coefficient of friction, and wear characteristics of materials in rotary or reciprocating friction states, providing reliable experimental means for the study of tribological properties of materials under vacuum operating conditions.

Application

Friction and wear performance testing of metal materials, ceramic materials, and composite materials in high-vacuum environments;

Tribological performance evaluation of functional coatings, solid lubricant coatings, and surface-modified layers under vacuum conditions;

Material selection research for aerospace structural components, space motion mechanisms, and vacuum transmission components;

Performance verification of components operating under vacuum or low-pressure conditions in precision machinery and the automotive industry;

Research on vacuum friction and wear mechanisms conducted by research institutes, university laboratories, and material testing organizations.

Standards

GJB 3032 — Test Method for Friction and Wear of Materials in Vacuum Environment

GB/T 3960 — Metallic Materials — Friction and Wear Test Methods

GB/T 12444 — Metallic Wear Testing — General Principles

ASTM G99 — Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus

ASTM G133 — Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear

ISO 7148 — Plain Bearings — Testing of Friction and Wear Characteristics of Bearing Materials

Technical Specifications

Item Technical Parameter
Maximum test force 20 N (dead-weight loading)
Normal load range 1–20 N
Load accuracy ≤ ±1% F.S
Friction force measurement accuracy ≤ 0.02% F.S
Linear speed 0.1–10 m/min
Counterface ball diameter φ3, φ4, φ5, φ6 mm (standard configuration)
Reciprocating stroke 0.5–20 mm (continuously adjustable)
Reciprocating frequency 0.1–30 Hz (continuously adjustable)
Rotational speed 5–3000 r/min (continuously adjustable)
Rotational speed accuracy ≤ 1 r/min
Friction modes Pin-on-disk friction, ball-on-disk friction
Lubrication modes Dry friction, boundary lubrication friction

Product Features

Meets military standard technical requirements for friction and wear testing in vacuum environments and is suitable for research under severe operating conditions;

Integrates both rotary and reciprocating friction modes, providing flexible test configurations;

Stable and reliable vacuum system with high ultimate vacuum and strict leak-rate control;

Continuously adjustable load and motion parameters, facilitating simulation of various actual working conditions;

High measurement accuracy of friction force and load, with good data repeatability;

Modular design, allowing expansion to high-temperature friction testing functions.

Accessories

Name Description
Vacuum chamber Core component of vacuum friction testing
Vacuum pump unit Provides high-vacuum environment
Vacuum measurement system Real-time monitoring of chamber vacuum level
Rotary/reciprocating friction module Enables different friction motion modes
Automatic loading mechanism Applies load accurately
Friction force sensor Measures friction force signals
Counterface balls Standard consumable components
Specimen fixtures Secure specimens of different sizes
Control and data acquisition software Test control and data processing

Test Principle

During the test, the specimen and counterface are installed inside the vacuum chamber, and the chamber is evacuated to the preset vacuum level using the vacuum system. According to test requirements, either rotary or reciprocating friction mode is selected, and parameters such as load, speed, stroke, and frequency are set. The loading mechanism applies a normal load to the friction pair, while the motion system drives relative sliding between the counterface and the specimen surface. During the test, sensors continuously collect friction force signals and calculate the coefficient of friction, while load and vacuum parameters are recorded simultaneously, enabling quantitative analysis of friction and wear performance of materials under vacuum conditions.

Operating Instructions

Before testing, confirm that the vacuum system sealing is in good condition to prevent leakage from affecting test results;

During evacuation, operate the vacuum system in stages according to specifications to avoid impact on specimens and sensors;

Different standards specify different requirements for load, speed, and friction modes, and corresponding standard parameters should be confirmed before testing;

Do not open the chamber under vacuum conditions; operation should only be performed after restoring atmospheric pressure;

When using the high-temperature module, pay attention to the influence of thermal expansion on fixtures and sensor systems.

Test Procedure

Determine the test conditions;

Install the specimen and counterface, and complete sealing of the vacuum chamber;

Start the vacuum system, evacuate the chamber to the specified vacuum level, and stabilize it;

Set the load, motion mode, and friction parameters, and start the friction test;

After the test, save the friction curves and data, restore atmospheric pressure, and remove the specimen;

Conduct subsequent analysis of wear scars and wear morphology.

FAQ

1. What is this product?

The High Vacuum Friction and Wear Tester is a laboratory testing instrument designed to evaluate the friction and wear behavior of materials and surface coatings under controlled high-vacuum conditions.

2. What is this product used for?

It is used to measure friction force, coefficient of friction, and wear characteristics of materials during rotary or reciprocating motion in vacuum environments, supporting tribological performance assessment under simulated vacuum operating conditions.

3. Why is this product important?

Material friction and wear behavior in vacuum differs significantly from that under atmospheric conditions. This equipment provides reliable and quantitative test data necessary for material selection, coating evaluation, and mechanism design for vacuum and space applications.

4. What industries is this product suitable for?

It is suitable for aerospace and space technology, precision machinery, automotive engineering, materials science, surface engineering, as well as research institutes, universities, and third-party testing laboratories.

5. What types of this product are available?

The system supports rotary and reciprocating friction configurations, pin-on-disk and ball-on-disk contact modes, and can be configured with optional modules such as high-temperature friction testing to meet different test requirements.


Note:QINSUN is very in place for textile testing and quality control,we have our own textile testing lab. Our textile testing equipment and testing methods are in the leading position in the industry. We have passed the textile testing certification and iso textile testing standards issued by a number of testing,We can provide textile testing equipment pdf manual. Sufficient inventory, big discounts, limited time promotion, Order now!

Leave Message Get Price